

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

R&D for space polarimeters working in the UV

Coralie Neiner (Paris Observatory), Martin Pertenaïs (DLR & Paris Observatory), Arturo Lopez Ariste (IRAP)

Polarimetry: basics

Polarimetry allows to measure the circular and linear polarisation of light. This allows to, e.g.:

- measure magnetic fields at the surface of stars or in the ISM
- study flat geometries (circumstellar disks,...)
- study the surface of planets

Polarisation is defined thanks to the Stokes parameters:

- Stokes V = circular polarisation
- Stokes Q and U = linear polarisation
- Stokes I = intensity

To perform polarimetry one requires to separate and record 2 states of polarisation, e.g. with a birefringent material.

polarimeter = modulator + analyzer

Space UV polarimeters

A polarimeter for a space mission such as the LUVOIR must be:

- efficient → SNR
- polychromatic → wide wavelength range
- small / light → cost
- robust \rightarrow launch, temperature changes,...

Only a few solutions exist to perform polarimetry on a wide wavelength domain:

- Polychromatic wave plates
- Fresnel rhombs
- Liquid crystals
- Temporal modulation
- Spatial modulation
- Mirrors

Space UV polarimeters

A polarimeter for a space mission such as the LUVOIR must be:

- efficient
- polychromatic
- small / light
- robust

Only a few solutions exist to perform polarimetry on a wide wavelength domain:

- Polychromatic wave plates \rightarrow only one material (MgF₂) available for the UV, thus cannot be polychromatic on a very wide domain
- Fresnel rhombs → problem for transmission in the UV
- Liquid crystals → opaque <250 nm, UV radiation</p>
- Temporal modulationSpatial modulation
- Mirrors

possible

Temporal modulation

Concept: create a polychromatic polarisation modulator, thanks to a rotating stack of several (3) plates of MgF₂ Snik et al. 2012

 \rightarrow optimise d_i and α_i

 \rightarrow rotate the stack of plates to several (6) pre-defined positions and take one measurement at each position

Temporal modulation

Demodulation matrix D: $S_{in} = D.I_{out}$ (known theoretically and calibrated)

At each wavelength:

$$\begin{pmatrix} I\\Q\\U\\V\\V \end{pmatrix} = \begin{pmatrix} D_1^I & D_2^I & D_3^I & D_4^I & D_5^I & D_6^I\\D_1^Q & D_2^Q & D_3^Q & D_4^Q & D_5^Q & D_6^Q\\D_1^U & D_2^U & D_3^U & D_4^U & D_5^U & D_6^U\\D_1^V & D_2^V & D_3^V & D_4^V & D_5^V & D_6^V \end{pmatrix} \cdot \begin{pmatrix} I_1\\I_2\\I_3\\I_4\\I_5\\I_6 \end{pmatrix}$$

Extraction efficiency for the Stokes parameters:

$$\epsilon_i = \left(n \cdot \sum_{j=1}^n D_{ij}^2\right)^{-1/2}$$

 \rightarrow optimal extraction is for $\epsilon_I{=}1$ and $\epsilon_{Q,U,V}{=}1/\sqrt{3}$

Temporal modulation

This solution was adopted for Arago (ESA M5 candidate, 123-888 nm) \rightarrow tested successfully in Visible, will be tested in UV in Spring

Spatial modulation

Concept: create a spatial polarisation modulator, thanks to a wedge (or more) of ${\rm MgF}_2$

$$\phi(x,\lambda) = \frac{2\pi\Delta n(\lambda)\tan\xi}{\lambda} \cdot x$$

Sparks et al. 2012

 \rightarrow the polarisation varies depending on the position (x) on the wedge

 $I_{out} = 0.5 (I + U \cos 2\phi 2\theta)$ + Q (cos\phi cos 2\theta-sin\phi sin 2\phi sin 2\theta) + V (cos\phi sin 2\phi sin 2\theta+sin\phi cos 2\theta))

Spatial modulation

Wavelength

We obtain a 2D image: the polarisation is modulated in the direction perpendicular to the wavelength, i.e. in the thickness of the spectral order

 \rightarrow tested successfully in Visible, will be tested in UV in 2018

 $\rightarrow\,$ could be an improved design for Arago

Pertenaïs et al. 2015

Spatial modulation

Wavelength

MgF_2

 MgF_2 is the only material that is both birefringent and transparent in the UV, but:

• it is not transparent in the FUV: 50% transmission for 5 mm at 120 nm

MgF₂

 MgF_2 is the only material that is both birefringent and transparent in the UV, but:

- it is not transparent in the FUV: 50% transmission for 5 mm at 120 nm
- its birefringence is 0 at 119.5 nm

MgF₂

 MgF_2 is the only material that is both birefringent and transparent in the UV, but:

- it is not transparent in the FUV: 50% transmission for 5 mm at 120 nm
- its birefringence is 0 at 119.5 nm

 \rightarrow temporal and spatial modulations cannot be used below ~120 nm

... unless we use stressed material (MgF₂ or LiF) \rightarrow difficult in space!

Modulation with mirrors

Concept: create a polarimeter with mirrors only

Mirrors polarise (= analyzer) and introduce a delay (= modulator)

- \rightarrow they can be used to built polarimeters
- \rightarrow polarisation depends on mirror coating, wavelength, and incidence angle
- → complete polarisation at Brewster angle

A combination of 3 mirrors is sufficient to create a polarimeter

Modulation with mirrors

Use 3 mirrors and rotate them together while maintaining the optical axis + add a Wollaston to increase intensity modulation

 \rightarrow optimise demodulation by choosing the best 3 angles

LUVOIR, Jan 12, 2017

Comparison between the 3 possible methods

Temporal modulation

- + well known, sufficient TRL, small
- + baseline for Arago
- plate assembly can create polarised interference fringes
- low transmission, MgF₂ \rightarrow does not work below ~120 nm
- rotating \rightarrow consuming + single point failure

Spatial modulation

- + static, small
- + studied for Arago
- new concept, low TRL
- big detectors needed, unless we find a solution for λ -dependence
- MgF₂ \rightarrow does not work below ~120 nm

Mirrors

- + works at any wavelength (but chromatic!)
- coatings \rightarrow transmission and polarisation in UV?
- moving mirrors \rightarrow consuming + single point failure
- big / heavy

LUVOIR, Jan 12, 2017

Other potential difficulties for the LUVOIR

It is important to control the instrumental polarisation in the path before the polarimeter:

- LUVOIR's primary mirror will be segmented
- LUVOIR's primary mirror may not be axi-symmetrical
- the telescope should rather be on-axis
- the polarimeter should rather be at the Cassegrain focus
- \rightarrow to be taken into account at telescope level

The precision of polarisation depends on the stability of the system:

- pointing stability
- thermo-mechanical stability
- \rightarrow to be taken into account at spacecraft/system level

 $\rightarrow\,$ many of these points are also relevant for the coronograph and already considered by NASA

Other potential difficulties for the LUVOIR

The polarimeter should be adapted to the science objectives:

- choose design (temporal modulation, spatial modulation, mirrors) according to lowest required wavelength
- not all LUVOIR's objectives require polarimetry → the polarimeter should be removable → additional mechanism
- plan the appropriate (re-)calibration each time the polarimeter is inserted back into the beam

Conclusions

In the frame of Arago, thanks to R&D funding by CNES:

- we developed and tested 2 types of compact polarimeters: temporal modulation and spatial modulation
- both give good results, both use MgF₂

For the LUVOIR:

- we can reuse the same concepts as for Arago but restrict the polarimetry above ~120 nm → loss in science
- we can develop a 3rd type of polarimeters with mirrors → will be part of the Phase 0 instrument study for LUVOIR funded by CNES