

The general context

The revolution in astrophysics: discovery of new planetary systems & characterisation of the dynamics of their host (multiple) stars (asteroseismology and spectropolarimetry)

Stellar rotation & magnetism/activity – planetary dynamics/atmospheres

Albrecht et al. 2012; Gizon,..., Mathis,..., et al. 2013

Orbital architecture
→ Interacting systems

Lissauer et al. 2011 Bolmont et al. 2014 2

LUVOIR and star-planet systems

Search for, characterize, and survey potentially habitable worlds.

- a) Directly detect reflected starlight of Earth-sized planets in the habitable zones of other stars, with a statistically meaningful number of detections, in order to:
- b) Analyze the frequency with which these worlds have certain atmospheric and surface properties, and specifically:
- c) Constrain the frequency of habitability and biological indicators on Earth-sized planets in the habitable zones of other stars.

Place the Solar System in the context of a diverse set of exoplanetary systems.

- a) Directly detect reflected starlight from a wide range of exoplanets, and transit spectra from a wide range of exoplanets, in order to:
- b) Understand the atmospheric structure and composition of these exoplanets, and
- c) Search for signs of habitability and biological activity in non-Earth-like planets.
- d) Image faint debris disks and exozodiacal light, in order to constrain their structure and composition and lend insights on planet formation processes.
- e) Characterize the architectures of exoplanet systems as a function of stellar type over time.

Study and characterize protoplanetary disks. LUVOIR would also enable the study and characterization of protoplanetary disks, and so address the science goals listed in 3 a-d above.

State of the art in star-planet system studies

In studies of star-planet systems, we need:

- to strongly improve our understanding of the dynamical evolution of the host-star
 - to go beyond ad-hoc description of Star-Planet Interactions

Complex internal structure, evolution, rotation and magnetism should be considered

Host star (M in M_☉)

Planets

THE HOST STAR

Magnetic fields: convection vs. radiation

Cool stars:

C.E.: Dynamo field (correlations with M, age, Ω)

R.C.: Fossil field

Pressure-driven winds

Hot stars:

C.C.: Dynamo field

R.E.: Fossil field

(not correlated)

Radiation-driven winds

Kippenhahn & Weigert 1997

Convection, Rotation, Turbulence & Dynamo action

Theoretical solar/stellar magnetic cycles

3D high resolution nonlinear simulations

e.g. Brun, Miesch, Toomre 2004; Augustson et al. 2015

©Brummell

Synergies spectropolarimetry – asteroseismology (Ground/ARAGO - PLATO)

Fossil magnetism (stellar radiation zones)

Fossil fields along stellar evolution

Alecian et al. 2013

Fossil fields complex topology

Braithwaite & Spruit 2004;
Braithwaite 2008;
Duez & Mathis 2010;
Duez, Braithwaite & Mathis 2010

Stellar winds and magnetospheres

→ Strongly impact rotational (& chemical + magnetic) evolution of stars and Star-Planets Interactions
 → Need for UV diagnosis

9

Tidal interactions in exoplanetary systems

The case of hot-Jupiter systems

Gizon et al. 2013; Davies et al. 2015

→ Tidal dissipation (the "engine" of secular evolution) in a star varies over several orders of magnitude as a function of:

- The mass
- The age
- The dynamics (rotation)

→ need for ab-initio modeling

Tidal dissipation in low-mass star convective envelopes

Ogilvie & Lin 2004, 2007 Rieutord & Valdetarro 2010 Baruteau & Rieutord 2013 Guenel et al. 2016

Grids of tidal dissipation for star-planet systems

In low-mass and solar-type stars, it varies over several orders of magnitude:

- → Stronger dynamical tide along the Pre-Main-Sequence and Sub-Giant phases
- → Its amplitude on the MS diminishes with mass (and the thickness of the CE)
- → Necessity to couple structural and rotational evolutions

Structural & rotational evolution

Star-planet systems dynamical evolution

- Low-mass star-planet systems circular & coplanar
- Ab-initio frequency-averaged dissipation of stellar tides in the convective envelope

Standard model
Model Bolmont & Mathis

 $M_p = 1 M_{jup}$

M**★**= 1 M_☉

 $P_{\star,i} = 1.2 \text{ day}$

- → Rotation deficiency: star initially fast rotator
- Rotation excess: star initially slow rotator

Understanding hot-Jupiters systems

Magnetic star-planet interactions Bow shock

Strugarek et al. 2014-15; Strugarek 2016

MHD model of Kepler 78

- Ab-initio modelling of MHD star-planet interactions with observed complex magnetic topologies and prediction of observational diagnosis (e.g. UV emission map)
- Potential strong impact on the evolution of the orbital architecture and planetary habitability (star – planetary atmosphere/magnetosphere interactions)

Tides in the dense core of giant planets

Internal structure

e.g. Guillot 1995

The inelastic rocky/icy core

Remus, Mathis, Zahn & Lainey 2012-15

Application to gaseous giants

Remus, Mathis, Zahn & Lainey 2012; Storch & Lai 2014-15

Application to icy giants

Remus, Mathis, Zahn, Lainey & Charnoz 2017

Towards integrated models for multi-layer planets

Remus, Mathis, Zahn & Lainey 2012

Ogilvie 2009, 2013 → Integrated models needed for gaseous giant (and telluric) planets Guenel, Mathis & Remus 2014

New physical ingredients in the atmosphere

LUVOIR

Zonal flows (driven by convection/tides)

Convective turbulence

Double diffusive instabilities

Baruteau & Rieutord 2013

Guenel et al. 2016

Mathis et al. 2016 (Barker et al. 2014)

André et al. 2017 (Stellmach et al. 2011)

Tides in telluric planets

From Venus to super Earth in the HZ of low-mass stars: rotation equilibria

New global models for atmospheric tides

The case of an isothermal stably stratified atmosphere

Prediction

The future big picture

Benbakoura et al. 2017

Dynamical code taking into account simultaneously ab-initio models of tidal and magnetic star-planet interactions

→ Simulation of the orbital architecture of planetary systems along the evolution of the host star

