

The general context

The revolution in astrophysics: discovery of new planetary systems \& characterisation of the dynamics of their host (multiple) stars (asteroseismology and spectropolarimetry)

Stellar rotation \& magnetism/activity

- planetary dynamics/atmospheres

Orbital architecture
\rightarrow Interacting systems

Lissauer et al. 2011
2

LUVOIR and star-planet systems

Search for, characterize, and survey potentially habitable worlds.
a) Directly detect reflected starlight of Earth-sized planets in the habitable zones of other stars, with a statistically meaningful number of detections, in order to:
b) Analyze the frequency with which these worlds have certain atmospheric and surface properties, and specifically:
c) Constrain the frequency of habitability and biological indicators on Earth-sized planets in the habitable zones of other stars.
Place the Solar System in the context of a diverse set of exoplanetary systems.
a) Directly detect reflected starlight from a wide range of exoplanets, and transit spectra from a wide range of exoplanets, in order to:
b) Understand the atmospheric structure and composition of these exoplanets, and
c) Search for signs of habitability and biological activity in non-Earth-like planets.
d) Image faint debris đisks and exozodiacal light, in order to constrain their structure and composition and lend insights on planet formation processes.
e) Characterize the architectures of exoplanet systems as a function of stellar type over time.
Study and characterize protoplanetary disks. LUVOIR would also enable the study and characterization of protoplanetary disks, and so address the science goals listed in 3 a-d above.

State of the art in star-planet system studies

In studies of star-planet systems, we need:

- to strongly improve our understanding of the dynamical evolution of the host-star
- to go beyond ad-hoc description of Star-Planet Interactions

Complex internal structure, evolution, rotation and magnetism should be considered

$$
\text { Host star (M in } \left.\mathrm{M}_{\odot}\right)
$$

Planets

\rightarrow Ab-initio physical modeling to accompany the study of discovered systems

THE HOST STAR

Magnetic fields: convection vs. radiation

Convection, Rotation, Turbulence \& Dynamo action

Theoretical solar/stellar magnetic cycles

3D high resolution nonlinear simulations
e.g. Brun, Miesch, Toomre 2004; Augustson et al. 2015

Synergies spectropolarimetry - asteroseismology (Ground/ARAGO - PLATO)

Fossil magnetism (stellar radiation zones)

Fossil fields along stellar evolution

Alecian et al. 2013

Fossil fields complex topology

Braithwaite \& Spruit 2004; Braithwaite 2008; Duez \& Mathis 2010;
Duez, Braithwaite \& Mathis 2010

Stellar winds and magnetospheres

Late-type stars

TYC 5164-567-1
Réville et al. 2016

Early-type stars

Ud-Doula et al. 2013
\rightarrow Strongly impact rotational (\& chemical + magnetic) evolution of stars and Star-Planets Interactions
\rightarrow Need for UV diagnosis

STAR-PLANET INTERACTIONS

The host star

Tidal interactions in exoplanetary systems

The case of hot-Jupiter systems

Gizon et al. 2013; Davies et al. 2015

Albrecht et al. 2012
\rightarrow Tidal dissipation (the "engine" of secular evolution) in a star varies over several orders of magnitude as a function of:

- The mass
- The age
- The dynamics (rotation)
\rightarrow need for ab-initio modeling

Tidal dissipation in low-mass star convective envelopes

Ogilvie \& Lin 2004, 2007
Rieutord \& Valdetarro 2010
Baruteau \& Rieutord 2013
Guenel et al. 2016

To get an order of magnitude of tidal dissipation along the evolution of stars
\rightarrow a frequency-averaged dissipation

Ogilvie 2013, Mathis 2015

Grids of tidal dissipation for star-planet systems

In low-mass and solar-type stars, it varies over several orders of magnitude:
\rightarrow Stronger dynamical tide along the Pre-Main-Sequence and Sub-Giant phases
\rightarrow Its amplitude on the MS diminishes with mass (and the thickness of the CE)
\rightarrow Necessity to couple structural and rotational evolutions

Structural \& rotational evolution

Star-planet systems dynamical evolution

- Low-mass star-planet systems - circular \& coplanar

- Ab-initio frequency-averaged dissipation of stellar tides in the convective envelope

Understanding hot-Jupiters systems

Magnetic star-planet interactions

Strugarek et al. 2014-15; Strugarek 2016

MHD model of Kepler 78

- Ab-initio modelling of MHD star-planet interactions with observed complex magnetic topologies and prediction of observational diagnosis (e.g. UV emission map)
- Potential strong impact on the evolution of the orbital architecture and planetary habitability (star - planetary atmosphere/magnetosphere interactions)

Giant planets

Tides in the dense core of giant planets

Internal structure

e.g. Guillot 1995

The inelastic rocky/icy core
Remus, Mathis, Zahn \& Lainey 2012-15

Application to gaseous giants
Remus, Mathis, Zahn \& Lainey 2012; Storch \& Lai 2014-15

Application to icy giants
Remus, Mathis, Zahn, Lainey \& Charnoz 2017

Towards integrated models for multi-layer planets

Remus, Mathis, Zahn \& Lainey 2012

Ogilvie 2009, 2013
\rightarrow Integrated models needed for gaseous giant (and telluric) planets

Guenel, Mathis \& Remus 2014

New physical ingredients in the atmosphere LUVOIR
Double diffusive instabilities

Tides in telluric planets

From Venus to super Earth in the HZ of low-mass stars: rotation equilibria

New global models for atmospheric tides

The case of an isothermal stably stratified atmosphere

Prediction

Consequences on planetary habitability?

The future big picture

ESPEM

Benbakoura et al. 2017
Dynamical code taking into account simultaneously ab-initio models of tidal and magnetic star-planet interactions
\rightarrow Simulation of the orbital architecture of planetary systems along the evolution of the host star

