Stars and circumstellar environments in the LUVOIR era

Great science projects by :

E. Lagadec, N. Nardetto, A. Matter & V. Hill

Perverted by :

Frantz Martinache

Raw appeal of a LUVOIR ?

Sensitivity

Angular resolution

Observations of stars with LUVOIR : Two strategies ?

- Resolved observations of individual stars and their environment

REQUIREMENTS : Resolving power !! Spectral coverage !

LUVOIR : λ/D ~ 2 – 20 mas

- Unresolved observations of stars as members of associations

R136 starbust cluster in LMC

REQUIREMENTS : Sensibility !! Spectral coverage ! Resolving power !

Mass loss from evolved stars

Mass loss from evolved stars

Pulsations & convection \rightarrow shock waves Dust condensates and is accelerated by radiation pressure \rightarrow wind

What can LUVOIR tell us ?

- Multi-λ observations : constrain grain size
- Time series : resolve shocks follow dust formation

- Characteristic size : 2 – 3 stellar radii

Spectral resolution Angular resolution

Resolved stars being observed today

SPHERE V band (554 nm) Kervella, Lagadec et al., 2015

Betelgeuse

Φ Orionis (PSF)

Polarimetric images of resolved stars

Innermost parts of protoplanetary disks

Classical Cepheids

Fig. 3.— Images of Cepheid hosts. Each image is of the Cepheid host indicated. The magenta outline shows the field of view of WFC3/IR, 2'7 on a side. Red dots indicate the positions of the Cepheids. Compass indicates North (long axis) and East (short axis). 1566 Cepheids observed with HST (WFC3-IR) in the 19 galaxies hosting SN Ia For 0.01 < z < 0.15 (or 2 Gly) (Riess et al, 2016)

LUVOIR's enhanced sensitivity will make it possible to discover distant Cepheids and improve the period-luminosity relation.

Resolved Classical Cepheids

IR Interferometry revealed Circumstellar environment (CSE) around most Cepheids. (Kervella+ 2006, Merand+ 2007, Gallenne+ 2011)

Size : 3 stellar radii in IR, up to 6 in the visible (Nardetto+ 2016). 10 Cepheids have a radius larger than 1mas (3 mas for I Car)

Flux contribution of few percents to 10% A relation between between the period and the flux contribution is not excluded

LUVOIR's angular resolution will constrain the shape of CSE of Cepheids → unbias the period-luminosity relation

NRM interferometry ?

First (pop III) stars

Extremely metal-poor stars [Fe/H]<-3):

fossil imprints of the first stars

 → probe the nature of first stars (Milky-Way & Local Group).
Impact of halo mass on first stars ? Brightest EMPS : V ~ 16 (LMC) - 20 Sensitivity requirement : x100 HST

Discriminating signatures require high spectral resolution : R > 10,000 or 40,000 in (200-400 nm)

Resolved extragalactic structures

R136 a1

Most massive star
known in the universe
265 Msun

- Important for top part of the IMF (limit usually accepted: 150 Msun)

- Pair-instability SNe in the vicinity of the MW?

Resolved extragalactic structures

LUVOIR... fantastic ! But with all the resolution you can get !!