Exoplanet Imaging with the Luvoir telescope

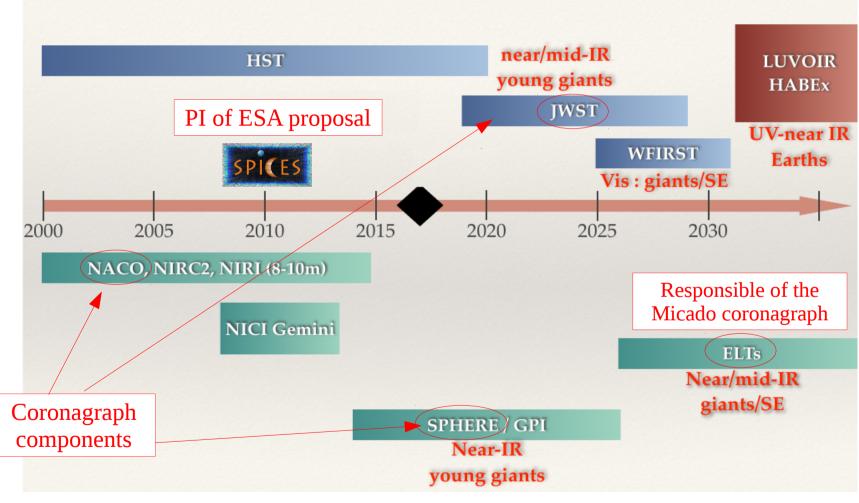
12th January 2017

Raphaël Galicher Raphael.galicher@obspm.fr

R&D At The Paris Observatory For High Contrast Imaging

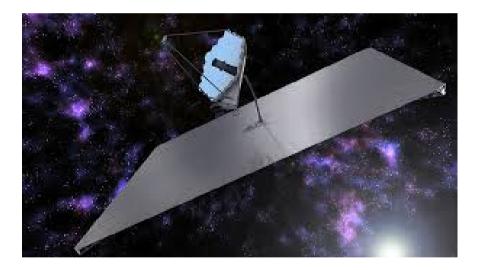
12th January 2017

Raphaël Galicher Raphael.galicher@obspm.fr



High contrast imaging and the Paris Observatory

And lots of R&D in laboratory


The Luvoir Optical/Near IR coronagraph Specifications from Science goals

Shawn Domagal, Jan. 11th 2017, Meudon

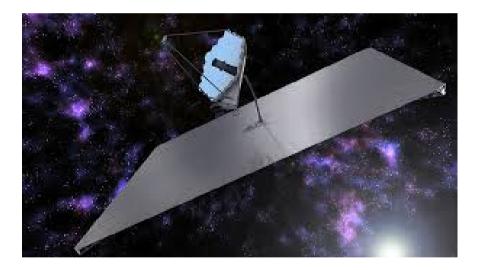
Contrast < 10⁻¹⁰ to observe ExoEarths

Low resolution spectroscopy (R>150)

Baseline bandpass : 0.4 μ m to 1.8 μ m Ambitious bandpass : 0.2 μ m to 2.4 μ m

l'Observatoire

LESIA


The Luvoir Optical/Near IR coronagraph Specifications from Science goals

Shawn Domagal, Jan. 11th 2017, Meudon

Contrast **10**⁻¹¹ to observe ExoEarths

Low resolution spectroscopy (R>150)

Baseline bandpass : 0.4 μ m to 1.8 μ m Ambitious bandpass : 0.2 μ m to 2.4 μ m

l'Observatoire

LESIA

The Luvoir Optical/Near IR coronagraph What are the challenges ?

Contrast 10⁻¹¹ to observe ExoEarths

→ Best in laboratory is a few 10^{-10} under « perfect » conditions

 \rightarrow R<100 for SPHERE & GPI

l'Observatoire

ESIA

Low resolution spectroscopy (R>150)

Baseline bandpass : 0.4 µm to 1.8 µm Ambitious bandpass : 0.2 µm to 2.4 µm

 \rightarrow need for achromatic coronagraph and control of chromatic aberrations

What do we need for the Luvoir instrument?

- **1**/ Attenuate the star light down to 10⁻¹⁰: **coronagraph**
- \rightarrow efficient over a large bandpass
- → robust to real conditions (jitter, segmented/obscurated pupil, etc)
- 2/ Wavefront errors down to 1pm rms over the pupil
- \rightarrow Wavefront **sensing** in the science image
- → Active **control** of phase and amplitude aberrations simultaneously?
- → Active control of chromatic aberrations (Fresnel effects)?

3/ **Stabilization** of the aberrations to enable a 10 factor a posteriori calibration

4/ Only one technical solution for all the science cases? photometry and spectrometry of exoplanets and circumstellar disks \rightarrow 4 instruments?

January 12th 2017

Raphaël Galicher

Dhservatoire

LESIA

Lots Of Techniques/Ideas Exist !

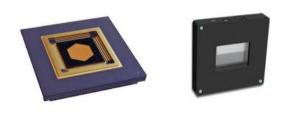
1/ Coronagraphs

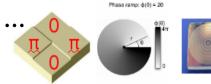
 \rightarrow FQPM, EOPM, Vortex, APLC, Band limited, DZPM, SLPM, ...

2/ High accuracy wavefront sensing

- \rightarrow LOWFS: Mas et al. 2012, Singh et al. 2015, Shi et al. 2015, ...
- → HOWFS: Self-coherent camera, Coffee, Electric Field Conjugation, ...

3/ Wavefront control


- \rightarrow Deformable mirrors
- → Spatial Light Modulators


4/ A posteriori calibration

- \rightarrow roll telescope
- \rightarrow spectral differential imaging
- \rightarrow coherence differential imaging

How to determine the best configuration/strategy? Need a laboratory to compare and associate the techniques

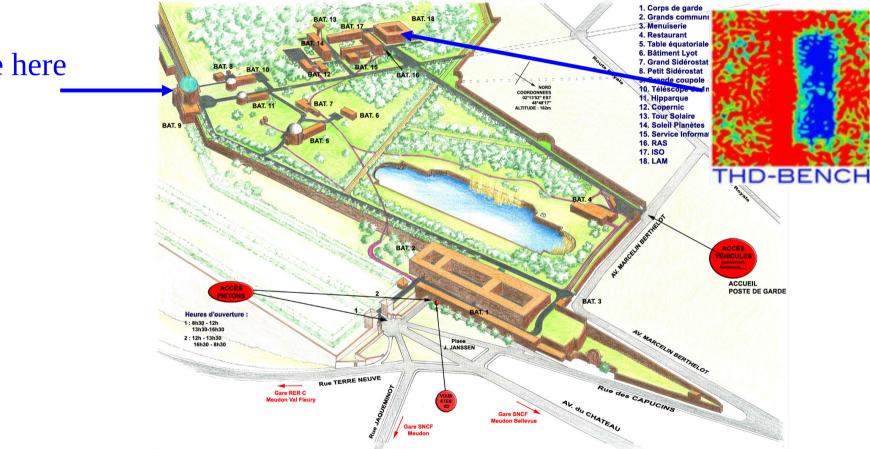
January 12th 2017

HD-BENC

The THD2 bench Banc Très Haute Dynamique Terrifically High Dynamic bench

Objectives

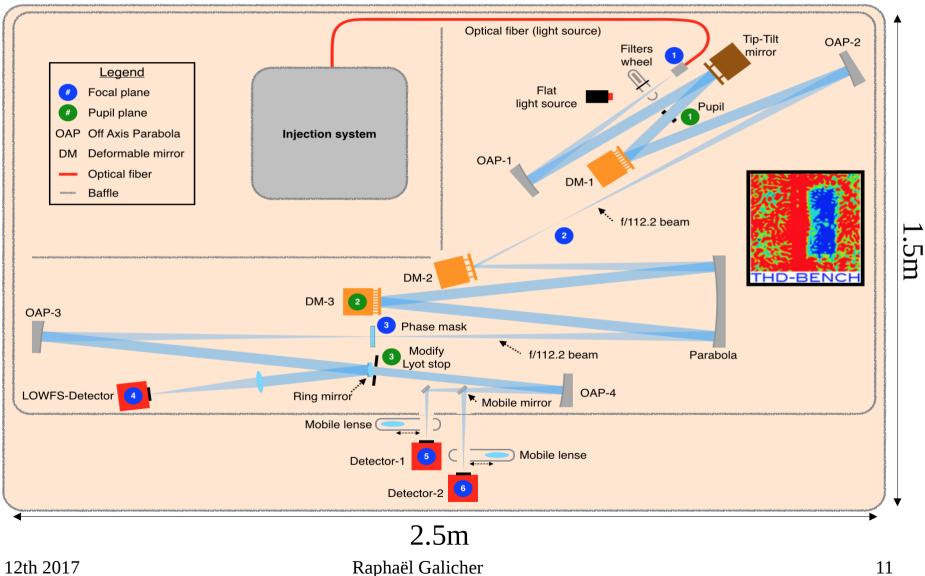
For future space- and ground-based telescopes


- + Compare high contrast imaging techniques under the same conditions
- + Test several associations of these techniques
- + Find the best instrumental configuration for each science case

THD2 bench is a R&D laboratory bench working in Vis/NIR

- → Accessible
- → Reproductible
- → Versatile

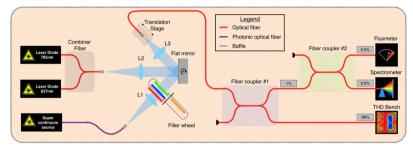
Where is the THD2 bench ?



We are here

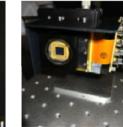
January 12th 2017

THD2 bench optical design


January 12th 2017

THD2 bench main characteristics

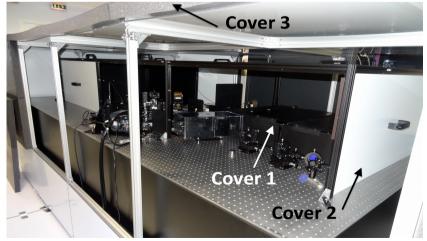
Sources 3 lasers, visible/NIR supercontinuum source


Active elements for LOWF+HOWF

1 tip-tilt mirror 3 deformable mirrors (in cascade)

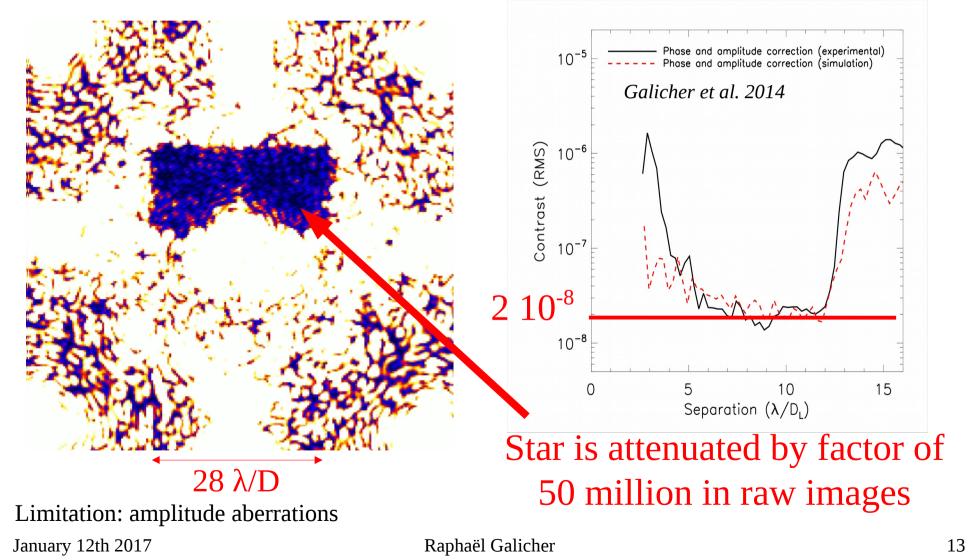
Stable over months with ~10pm accuracy Clean room 3 covers (temperature, acoustic, turbulence) Motorized alignment Temperature, humidity measurements Control room

Tip-Tilt 32x32



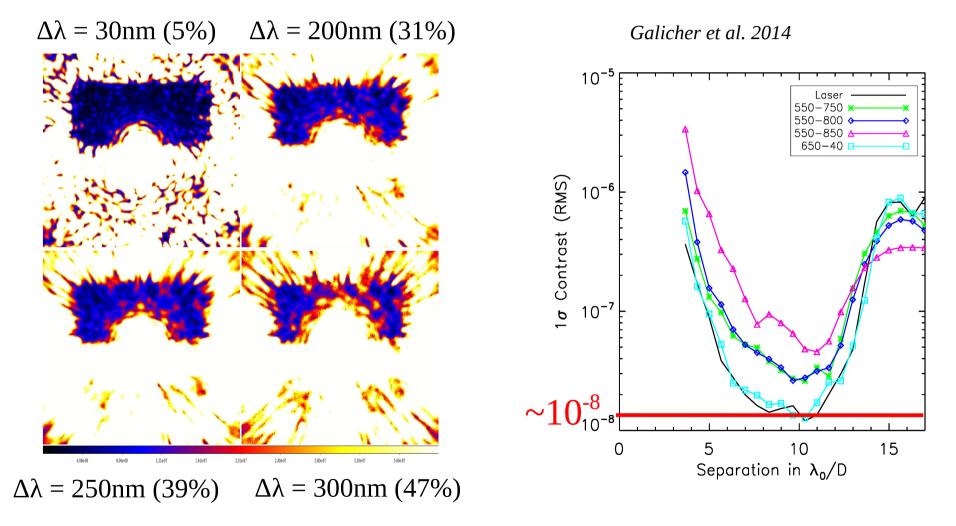
12x12

34x34



THD2 bench : monochromatic light

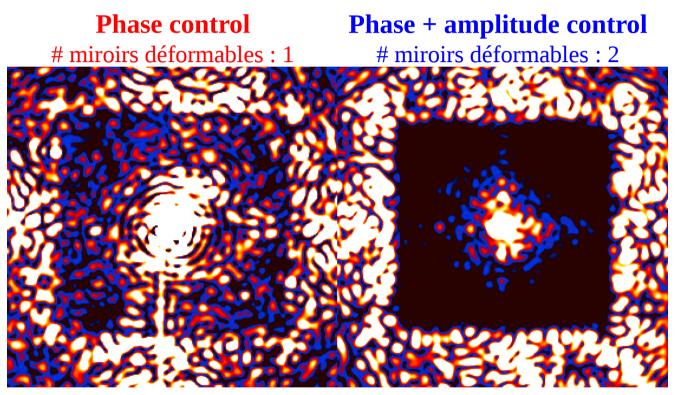
640nm laser light; FQPM coronagraph, Self-coherent camera WF sensing, one deformable mirror



THD2 bench : large bandpass

DZPM coronagraph in visible, Self-coherent camera WF sensing, one deformable mirror

THD2 bench : large bandpass


DZPM coronagraph in visible, Self-coherent camera WF sensing, one deformable mirror

 $\Delta \lambda = 30$ nm (5%) $\Delta \lambda = 200$ nm (31%) 10^{-5} Laser Almost no chromatism induced by the THD bench \rightarrow can test chromatism of components/techniques! $\sim 10^{-8}_{10^{-8}}$ 0 5 10 15 Separation in λ_0/D $\Delta \lambda = 250 \text{nm} (39\%)$ $\Delta\lambda = 300$ nm (47%)

THD2 bench : phase, amplitude, chromatic aberrations

FWPM coronagraph, Self-coherent camera WF sensing

→ Full field-of-view with 10⁻⁸ raw contrast level
→ In future : control of chromatic aberrations

January 12th 2017

THD2 bench : collaborations

Coronagraphic components	Advancement	Collaboration
Four Quadrant Phase Mask		GEPI, France
Multi-Four Quadrant PM		GEPI, France
Apodized Dual Zone PM		LAM, France
8-Octant Phase Mask	09/2015 =>	Hokkaido Univ., Japan
Vector Vortex	09/2015 =>	NAOJ, Japan
6-Level Phase Mask	11/2016 =>	Shanghai Univ., China & GEPI, France
Achromatic Phase Mask	11/2016 =>	Shanghai Univ., China
Wavefront control	Advancement	Collaboration
Monochromatic & Polychromatic Self- Coherent Camera	\checkmark	Lesia, France
Amplitude & Chromatism correction	12/2015 =>	Lesia, & Lagrange, France
Coronograph & Phase diversity (COFFEE algorithm)	01/2016 =>	Onera, France
Optimization of algorithms, system study	10/2016 =>	SRON, Netherlands
Stability of a high contrast imager	01/2017 =>	Lesia, France
Electric field conjugation	2017 =>	IPAG, France
Zelda technique	2017 (TBC) =>	LAM, France

Conclusions

<u>The Paris Observatory has a long history in high contrast imaging</u>

- → Several contribution to space- and ground- based instruments
- \rightarrow Lots of R&D

There is no demonstrated solution that can get the required coronagraphic contrast for measuring the spectrum of an Earth-twin planet

BUT

There are a lots of technical solutions

 \rightarrow TPF, WFIRST context

The THD2 bench is a unique R&D facility for preparing the LUVOIR coronagraph

- → Designed for preparing space missions
- \rightarrow Already lost of collaborations that the Luvoir project could benefit of

Thank you