Evolution and Properties of massive stars

The Galaxy

The Magellanic Clouds

and slightly beyond

With inputs from S. de Mink, A. Fullerton, D.J. Hillier, T. Lanz, M. Postman, H. Sana, N. Walborn

Cosmic Origin program + ESA Cosmic Vision + JWST

 \rightarrow The origin and evolution of galaxies, stars and planets

Fundamental questions :

- ✓ When did the first stars form and how did they shape their environments?
- ✓ What are the cosmic origins of chemical elements?
- ✓ How do exchange of mass and momentum between stars and the environment shape the origin and evolution of galaxies?

Answers to these questions require a qualitative jump in our understanding of massive stars

Why the UV?

Why the UV?

Present Status in the archives

Obs.	Instrument/Detector	Archives
IUE	SWP : 1150 – 1970 Å R ~ 10,000 – 20,000	~ 200 Galactic O and B stars (Walborn+ 1985, 1995)
FUSE	Sic + Lif : 905 – 1187 Å R ~ 15,000 – 20,000	~ 200 Galactic + 140 MCs OB stars (Pellerin+ 2002; Walborn+ 2002)
HST	GHRS : 1150 – 1900 Å (G140M) R ~ 15,000 – 35,000 (1 st order) 70,000 – 90,000 (echelle)	~ 53 MCs + 11 LG OB stars (Walborn+ 1995; Bianchi+ 1996)
	STIS: 1150 – 1700 Å (MAMA E140M) R = 45,800 (echelle)	21 LMC + 36 SMC OB stars (Heap+ 2006; Bouret+ 2013; Crowther+ 2014)
	COS : 1150 – 1775 Å (G130M + G160M) R = 16,000 – 21,0000	15 LMC + 32 SMC + 3 LG OB stars (Walborn+ 2017; Bouret+ 2015)
	1120 – 2250 Å (G140L) R ~ 2600	8 LG OB stars (Garcia+ 2014)

Walborn et al 2017

Some Results – 1: Clumping

 $\dot{M}_{PV}\,$ up to a factor 100(!) discrepant with $\dot{M}_{H\alpha}$

FUV-UV (+optical):

- M reduced by factors 3 to 7 compared to theoretical predictions
- starts close to the base of the wind

More realistic description of clumping \rightarrow same reduction for \dot{M}

Properties seem identical at lower Z

Crowther et al. (2002); Hillier et al. (2003); Bouret et al. (2003, 2005, 2012, 2013, 2015); Fullerton et al. (2006); Martins et al. (2008)

Some results 2 - R136 : ionizing star cluster

Crédit : ESO/P. Crowther/C.J. Evans

HST/STIS (+ FGS) \rightarrow 39 HST orbits, 17 slits, 0.2" width

Several stars (>7) more massive than 100 M_{\odot} (e.g. $M(a1) \sim 315~M_{\odot})$

Some results 2 - R136 : ionizing star cluster

Crédit : ESO/P. Crowther/C. Evans

HST/STIS (+ FGS) \rightarrow 39 HST orbits, 17 slits, 0.2" width

Several stars (>7) more massive than 100 M_{\odot} (e.g. M(a1) \sim 315 $M_{\odot})$

 $100 + M_{\odot}$ stars disproportionally contribute to ionizing radiation and strong spectral features (He II 1640 emission)

Omitting these leads to (e.g. Starburst99, BPASS)

- Under estimating ionizing fluxes
- > Over estimating the age
- Over estimating the metallicity

Some results 3 - $\dot{M}(Z)$ beyond the MCs

Theory \rightarrow Mass loss rates (and V_{∞}) scale down with metallicity: $\dot{M} \propto Z^{0.69}$ (Vink et al. 2001)

 \rightarrow lower mass-loss rates in the MCs compared to the Galactic case

Observe these stars in the UV with HST/COS

Some results 3 - $\dot{M}(Z)$ beyond the MCs

- \rightarrow smaller than those by Tramper et al. (2011)
- \rightarrow Does not support a breakdown in the \dot{M} Z relation
- \rightarrow but only 3 stars

What is needed to go beyond?

Big questions

✓ How does the IMF vary with environment?

- Is there a Universal upper stellar mass limit?
- ✓ Is the stellar IMF the same in galaxies with much more intense star formation than the Milky Way?
- ✓ What features in the integrated UV spectra of "resolved" starbursts (100 pc)?

\checkmark Physics of radiatively-driven winds for various Z

- ✓ What are the mass-loss rates, v_{∞} ?
- ✓ What is the effect of rotation?
- ✓ Variability, clumping properties?
- \checkmark What consequences on evolution, feedback, spectral synthesis

Big questions

- ✓ Binary (high) fraction Universal ?
 - \checkmark dense regions, low Z
 - Probing extreme low mass companions
 - Imprints of binary products in UV spectra of distant populations
 - What are the impact on rotational velocity distributions?
 - Link with the production of runaway stars
- ✓ New kind of transients may need UV observations
 - ✓ CCSNe, Compact binaries... but TOO capability
- ✓ Spectropolarimetric capability :
 - \checkmark search for magnetic fields as a function of Z
 - Study shapes of circumstellar environments

Absorption component probes regions with different velocity/density

Summary

ISM and extinction Chemical enrichment and mixing Dynamics and distribution of the ISM Empirical and theoretical spectral library Spectral population Synthesis Feedback on Local and Global environment