PARIS
DIDEROT

## UV Spectra of extremely metal-poor stars

Piercarlo Bonifacio


## massive stars

10 Myr
low mass stars


As a gas cloud contracts it heats, $P V=n R T$, thus also pressure increases, tends to balance the gravitational force. If the mass is small, contraction stops. To keep contracting I need to cool the gas.

Line cooling: collisional excitation, followed by radiative recombination.


## Dust cooling

## Dust grain

 collected from the Earth's orbital environment. Likely origin in the ISM.

Collisions with gas particles heat the grains. The energy is then radiated in the IR and these low-energy photons are not absorbed, thus the energy is effectively removed from the thermal pool.

## Formation of low mass stars

- Zero metallicity $\Rightarrow$

FRAGMENTATION (Clarke e $\dagger$ al. 2011, never observed)

- Metallicity > $\mathrm{Zcr} \Rightarrow$
$\star$ CII \& OI fine structure cooling (Bromm \& Loeb 2003)
$\star$ dust cooling + fragmentation (Schneider et al. 2011)


From Greif et al (2011)


Dots stars with $\mathrm{M}<1$ Msun

綦 flat distribution of masses between $\sim 0.1$ to 10

## TOPOS project



## Some typical X-Shooter spectra


$[\mathrm{Fe} / \mathrm{H}]=-4.1$
$\alpha$ low

CEMP, $\alpha$ low

CEMP, $[\mathrm{Fe} / \mathrm{H}]=-4.8$

The carbon abundances in CEMP stars are bimodal High-C band


Bonifacio et al. 2015 A\&A 579,A28

9 stars with $[\mathrm{Fe} / \mathrm{H}]<-4.5$

Christlieb (200I)
Allende-Prieto -Frebel 2015
Frebel et al 2005
Norris (2007)
Bonifacio 2015


## The carbon abundances in CEMP stars are bimodal



Bonifacio et al. 2015 A\&A 579, A28
(


The problem is that these stars have very little flux in the UV !


The UV region allows a much richer and more complete inventory of $n$-capture elements


Roederer et al. (2016)


But not only. P cannot be measured in MP stars without going to the UV Roederer et al. (2014)

SMSS-J031300-670839 the most iron poor star known [Fe/H]<-7.2 still has no Fe line detected, in spite of 32000s integration with COS with HST : V=14.7


Bessel et al. (2015)

Barbuy et al. (2011)



CS 31082-001
45 HST orbits $\mathrm{S} / \mathrm{N} \sim 40 \quad \mathrm{~V}=11.7[\mathrm{Fe} / \mathrm{H}]=-2.9$
This is one of the brightest stars of interest

## Any TLRs?

- Wavelength range: 120-300 nm
- Resolution: minimum 20000 desired 60000
- Sensitivity: be able to observe TO stars with $\mathrm{g}=18$ and giant stars with $\mathrm{g}=15$ (in how much time?) to obtain spectra with $\mathrm{S} / \mathrm{N} \sim 40$

